487 research outputs found

    Acoustic Space Learning for Sound Source Separation and Localization on Binaural Manifolds

    Get PDF
    In this paper we address the problems of modeling the acoustic space generated by a full-spectrum sound source and of using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A non-linear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound source direction. We extend this solution to deal with missing data and redundancy in real world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods.Comment: 19 pages, 9 figures, 3 table

    High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables

    Get PDF
    In this work we address the problem of approximating high-dimensional data with a low-dimensional representation. We make the following contributions. We propose an inverse regression method which exchanges the roles of input and response, such that the low-dimensional variable becomes the regressor, and which is tractable. We introduce a mixture of locally-linear probabilistic mapping model that starts with estimating the parameters of inverse regression, and follows with inferring closed-form solutions for the forward parameters of the high-dimensional regression problem of interest. Moreover, we introduce a partially-latent paradigm, such that the vector-valued response variable is composed of both observed and latent entries, thus being able to deal with data contaminated by experimental artifacts that cannot be explained with noise models. The proposed probabilistic formulation could be viewed as a latent-variable augmentation of regression. We devise expectation-maximization (EM) procedures based on a data augmentation strategy which facilitates the maximum-likelihood search over the model parameters. We propose two augmentation schemes and we describe in detail the associated EM inference procedures that may well be viewed as generalizations of a number of EM regression, dimension reduction, and factor analysis algorithms. The proposed framework is validated with both synthetic and real data. We provide experimental evidence that our method outperforms several existing regression techniques

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    Approximate Bayesian computation via the energy statistic

    Get PDF
    Approximate Bayesian computation (ABC) has become an essential part of the Bayesian toolbox for addressing problems in which the likelihood is prohibitively expensive or entirely unknown, making it intractable. ABC defines a pseudo-posterior by comparing observed data with simulated data, traditionally based on some summary statistics, the elicitation of which is regarded as a key difficulty. Recently, using data discrepancy measures has been proposed in order to bypass the construction of summary statistics. Here we propose to use the importance-sampling ABC (IS-ABC) algorithm relying on the so-called two-sample energy statistic. We establish a new asymptotic result for the case where both the observed sample size and the simulated data sample size increase to infinity, which highlights to what extent the data discrepancy measure impacts the asymptotic pseudo-posterior. The result holds in the broad setting of IS-ABC methodologies, thus generalizing previous results that have been established only for rejection ABC algorithms. Furthermore, we propose a consistent V-statistic estimator of the energy statistic, under which we show that the large sample result holds, and prove that the rejection ABC algorithm, based on the energy statistic, generates pseudo-posterior distributions that achieves convergence to the correct limits, when implemented with rejection thresholds that converge to zero, in the finite sample setting. Our proposed energy statistic based ABC algorithm is demonstrated on a variety of models, including a Gaussian mixture, a moving-average model of order two, a bivariate beta and a multivariate gg-and-kk distribution. We find that our proposed method compares well with alternative discrepancy measures.Comment: 25 pages, 6 figures, 5 table

    Hemodynamically informed parcellation of cerebral FMRI data

    Get PDF
    Standard detection of evoked brain activity in functional MRI (fMRI) relies on a fixed and known shape of the impulse response of the neurovascular coupling, namely the hemodynamic response function (HRF). To cope with this issue, the joint detection-estimation (JDE) framework has been proposed. This formalism enables to estimate a HRF per region but for doing so, it assumes a prior brain partition (or parcellation) regarding hemodynamic territories. This partition has to be accurate enough to recover accurate HRF shapes but has also to overcome the detection-estimation issue: the lack of hemodynamics information in the non-active positions. An hemodynamically-based parcellation method is proposed, consisting first of a feature extraction step, followed by a Gaussian Mixture-based parcellation, which considers the injection of the activation levels in the parcellation process, in order to overcome the detection-estimation issue and find the underlying hemodynamics
    corecore